Fraktal Nedir ve Fraktal Örnekleri

Matematik özellikle geometri 20 yüzyıla gelene kadar Öklid geometrisinde tanımlanan kavramları kullandı; doğrular, düzlemler, üçgenler… Ama gerçek hayatta bulutlar küresel, dağlar konik, göller de eliptik değil. Doğayı daha iyi anlamak ve modellemek için yeni bir geometriye gereksinim vardı. İşte bu da fraktal geometriydi.

Bilim & Teknoloji 12.11.2019, 11:30 12.11.2019, 14:54
Fraktal Nedir ve Fraktal Örnekleri

Bir şeklin orantılı olarak küçültülmüş veya büyütülmüş modelleriyle inşa edilen örüntülere fraktal adı verilir. Halı veya kilim desenlerini, pisagor ağacını fraktallara örnek verebiliriz. Bir cismi oluşturan parçalar ya da bileşenlerin cismin tamamına benzemesi matematikte “fraktal” olarak adlandırılır. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde tekrarlanır. Öyle ki bütünün her bir parçası büyütüldüğünde yine cismin bütününe benzer. Fraktal terimi parçalanmış ya da kırılmış anlamına gelen Latince “fractus” sözcüğünden türetilmiştir. 

İÇİNDEKİLER

  1. Fraktal Nedir
  2. Fraktal Boyut
  3. Fraktal İlk Hangi Tarihte Ve Kim Tarafından Bulundu
  4. Teorinin Gelişimi
  5. Fraktal Nerelerde Kullanılır
  6. Fraktal Nasıl Oluşturulur
  7. Fraktallar ve Örüntüler Arasındaki Fark ve İlişkiler
  8. Fraktal Örnekleri
  9. Fraktal Soruları Nasıl Çözülür
  10. Fraktal Görselleri

FRAKTAL NEDİR?
Fraktal; matematikte, çoğunlukla kendine benzeme veya oransal kırılma özelliği gösteren karmaşık geometrik şekillerin ortak adıdır. Fraktallar, klasik, yani Öklid (Euklides) geometrideki kare, daire, küre gibi basit şekillerden çok farklıdır. Bunlar doğadaki, Öklid'çi geometri aracılığıyla tanımlanamayacak pek çok uzamsal açıdan düzensiz olguyu ve düzensiz biçimi tanımlama yeteneğine sahiptir. Fraktal terimi parçalanmış ya da kırılmış anlamına gelen Latince "fractus" sözcüğünden türetilmiştir. İlk olarak 1975'te Polonya asıllı matematikçi Benoit B. Mandelbrot tarafından ortaya atılan kavram, yalnızca matematik değil fiziksel kimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etkiler yaratan yeni bir geometri sisteminin doğmasına yol açmıştır.

Yukarıda: Sierpinski üçgeni; mutlak surette simetrik bir fraktal.

Tüm fraktallar kendine benzer ya da en azından tümüyle kendine benzer olmamakla birlikte, çoğu bu özelliği taşır. Kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününe benzer. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza değin sürebilir; öyle ki,her parçanın her bir parçası büyütüldüğünde, gene cismin bütününe benzer. Bu fraktal olgusu, kar tanesi ve ağaç kabuğunda kolayca gözlenebilir. Bu tip tüm doğal fraktallar ile matematiksel olarak kendine benzer olan bazıları, stokastik (olasılıksal) yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler. Fraktal cisimler, düzensiz biçimli olduklarından ötürü Öklid'çi şekilleri ötelemezler. (Öteleme bakışına sahip bir cisim kendi çevresinde döndürüldüğünde görünümü aynı kalır.)

FRAKTAL BOYUT
Fraktalların belirleyici bir özelliği, fraktal boyut olarak adlandırılan matematiksel bir parametrelerinin olmasıdır. Bu parametrenin bütünüyle geçerli ve basit bir tanımı yoktur. Mandelbrot bu parametreyi Haussdorf boyutu ile denk tutmaktadır. Fraktal boyut, Öklid'çi şekillerin topolojik boyutlarına eşit, fraktallar için topolojik boyutlarından büyüktür. Örneğin Cantor kümesinin fraktal boyutu D=log2/log3 0.6309>0, topolojik boyutu ise DT=0'dır.:14-15

Yukarıda: Bir fraktalı giderek yakınlaşarak izleyen bir animasyon. Simetriye dikkat ediniz.

Kendisinin tam bir kopyasını daha küçük boyutlarda içeren fraktallar için fraktal boyutu ve kendine benzerlik boyutu değerleri aynıdır. Bir şekil kendisine benzeyen (n) kadar kopyadan oluşuyor ve her bir kopya özgün şekle göre, uzunluk olarak, (1/m) büyüklüğünde ise, bu şeklin kendine benzeme boyutu (log n/log m) ile verilir. Yukarıda örnek olarak verilen Sierpinski üçgeni, kendine benzeyen n=3 kopyadan oluşmuş, her bir kopya da özgün şeklin yarısı (m=2) uzunluğundadır; dolayısıyla Sierpinski üçgenin fraktal boyutu (D=log3/log2 1.585)'tir.

FRAKTAL İLK HANGİ TARİHTE VE KİM TARAFINDAN BULUNDU?
İlk olarak 1975’te Polonya asıllı matematikçi Beneoit B. Mandelbrot tarafından ortaya atılan fraktal kavramı, yalnızca matematik değil fizikokimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etki-ler meydana getiren yeni bir geometri sisteminin doğmasına yol açmıştır.


TEORİNİN GELİŞİMİ
Benoit Mandelbrot, IBM laboratuvarlarında çalışmaya başladığında Oyun kuramı, iktisat ve emtia fiyatları gibi çeşitli alanlarda çalışan bir mühendisti. Bu çalışmalarını tamamladığında veri iletim hatlarındaki gürültü üzerinde çalışmaya başladı. Mühendisler, veri aktarımı sırasında oluşan gürültü karşısında çaresiz kalmışlardı. Mühendislerin bu soruna bulabildikleri en iyi çare, sinyal gücünü arttırmaktan ileri gidememişti; ama sinyal gücünün arttırılması da tam bir çözüm sağlamamıştır. İletim hatlarındaki gürültü doğası gereği gelişigüzel olmasına rağmen kümeler halinde gelmekteydi. İletişim süresi boyunca hatasız periyotlar arasında hatalı periyotlar yer almaktaydı. Hatalı periyotların incelenmesi, hata paterninin sanıldığından daha karmaşık olduğunu ortaya koymuştur. Mandelbrot, bir günlük veri trafiğini birer saatlik periyotlara ayırdı. Daha sonra, hatanın gözlendiği periyotları ele alıp bu periyotlar yirmişer dakikalık parçalara böldü ve yine gördü ki, bu birer saatlik periyotların içinde de yine hatasız bölümler bulunmaktaydı. Mandelbrot, hatalı bölümler daha kısa zaman aralıklarına bölmeye devam etti. Ve sonunda hatasız periyotların halen var olduğunu gösterdi. Bu arada aykırı bir durum Mandelbrot'un dikkatini çekti: hatalı periyotların hatasız periyotlara oranı periyodun uzunluğundan bağımsız olarak neredeyse sabit kalıyordu.

FRAKTAL NERELERDE KULLANILIR?
Kendine benzerlik ve tamsayı olmayan boyutlu kavramlarıyla birlikte fraktal geometri, istatistiksel mekanikte, özellikle görünürde  rastgele özelliklerden oluşan fiziksel sistemlerin incelenmesinde giderek daha yaygın olarak kullanılmaya başlanmıştır. Örneğin, gökada kümelerinin evrendeki dağılımının saptanmasında ve akışkan burgaçlanmalarına ilişkin problemlerin çözülmesinde fraktal benzetimlerden (simülasyon) yararlanılmaktadır. Fraktal geometri bilgisayar grafiklerinde de yararlı olmaktadır. Fraktal algoritma ise, engebeli dağlık araziler ya da ağaçların karışık dal sistemleri gibi karmaşık, çok düzensiz doğal cisimlerin gerçektekine benzer görüntülerinin oluşturulabilmesini olanaklı kılmıştır.

FRAKTAL NASIL OLUŞTURULUR?
Bir şeklin orantılı olarak küçültülmüş ya da büyütülmüşleri ile inşa edilen örüntüler fraktal olarak adlandırılır. Fraktalın bir özelliği de, küçük bir parçasındaki örüntünün şeklin tamamındaki örüntüyle aynı olmasıdır.

Fraktallar ve Örüntüler Arasındaki Fark

Fraktal ve örüntü arasındaki ilişki şöyledir:

Her fraktal bir örüntüdür ancak her örüntü bir fraktal değildir.

Bir örüntünün fraktal olabilmesi için:

  1. Öncelikle örüntü olabilmesi için bir kurala göre ilerlemesi gerekir.
  2. Örüntünün büyümesi veya küçülmesi gerekir.
  3. Bir önceki şekli içinde barındırması gerekir.

FRAKTAL ÖRNEKLERİ
Şimdi hangi örüntülerin niçin fraktal olduğunu veya neden fraktal olmadığını örnek resimlerle inceleyelim.

ÖRNEK 1: Aşağıdaki şekilde K harfi %50 küçültülerek şekle eklenmiş ve bir fraktal oluşturulmuştur. Dikkat edilirse her adım bir önceki adımı içinde barındırmaktadır.

ÖRNEK 2 : Aşağıdaki örüntüde eşkenar üçgen küçültülerek yeni adımlar oluşturulmuştur. Bu örüntü de bir fraktaldır.

ÖRNEK 3 : Aşağıdaki şekiller belirli bir kurala göre dizildikleri için örüntüdür ancak fraktal olabilmesi için aynı şeklin büyültülmüşü veya küçültülmüşü kullanılması gerekir. Bu yüzden bu örüntü fraktal değildir.

ÖRNEK 4 : Aşağıdaki şekiller belirli bir kurala göre dizildikleri için örüntüdür ancak fraktal olabilmesi için aynı şeklin büyültülmüşü veya küçültülmüşü kullanılması gerekir. Bu yüzden bu örüntü fraktal değildir.

FRAKTAL SORULARI NASIL ÇÖZÜLÜR?
Fraktal soruları genelde iki şekilde sorulur:

1. Soru Tipi: Örüntülerin fraktal olup olmadığı sorulur. Bu sorularda dikkat edilmesi gereken şeklin büyütülmüş veya küçültülmüşünün kullanılması ve örüntünün bir adımının bir önceki adımını içeriyor olmasıdır.

2. Soru Tipi: Fraktalın herhangi bir adımında kullanılan şekil sayısı sorulur. Bu tip sorularda ise kullanılan şekilleri tek tek saymaktan ziyade bir önceki şekile göre ne kadar arttığını bulmak kolaylık sağlar. Bu şekilde bir sayı örüntüsü yakalanabilir. Örnek verecek olursak yukarıdaki K harfi fraktal sorusuna bakalım.

1. Adım: 1

2. Adım: 1+2

3. Adım: 1+2+4

3. Adım: 1+2+4+8

Buradan her adımda 2’nin kuvvetleri şeklinde arttığını görürüz.

FRAKTAL RESİMLERİ İÇİN TIKLAYINIZ!

Fraktallar sadece geometride oluşturduğumuz şekiller değildir. Doğada da fraktal örnekleri mevcuttur.



Yorumlar (2)
Halis 6 yıl önce
Çok ilginç bilmiyordum...
Gülten 3 yıl önce
Bu tür görselleri görüyordum ama Fraktal dendiğini ilk defa duydum.
6
hafif yağmur
Günün Anketi Tümü
En Çok Sevdiğiniz Renk Hangisi?
Namaz Vakti 07 Mart 2021
İmsak 05:58
Güneş 07:22
Öğle 13:20
İkindi 16:33
Akşam 19:08
Yatsı 20:27
Puan Durumu
Takımlar O P
1. Beşiktaş 27 60
2. Galatasaray 27 57
3. Fenerbahçe 27 55
4. Trabzonspor 27 51
5. Hatayspor 27 46
6. Alanyaspor 27 43
7. Gaziantep FK 28 43
8. Karagümrük 27 41
9. Göztepe 27 36
10. Antalyaspor 27 35
11. Sivasspor 26 33
12. Konyaspor 26 32
13. Malatyaspor 28 31
14. Kasımpaşa 27 29
15. Kayserispor 26 28
16. Rizespor 27 28
17. Başakşehir 27 26
18. Erzurumspor 27 26
19. Denizlispor 27 24
20. Ankaragücü 26 23
21. Gençlerbirliği 26 21
Takımlar O P
1. Giresunspor 24 53
2. Samsunspor 25 50
3. İstanbulspor 25 47
4. Adana Demirspor 25 45
5. Altınordu 25 45
6. Altay 24 41
7. Tuzlaspor 24 41
8. Ankara Keçiörengücü 25 40
9. Bursaspor 24 34
10. Bandırmaspor 25 32
11. Ümraniye 24 31
12. Menemenspor 25 27
13. Adanaspor 24 26
14. Boluspor 24 26
15. Balıkesirspor 24 25
16. Akhisar Bld.Spor 24 19
17. Ankaraspor 25 16
18. Eskişehirspor 24 7
Takımlar O P
1. Man City 27 65
2. M. United 27 51
3. Leicester City 27 50
4. Chelsea 27 47
5. Everton 26 46
6. West Ham 26 45
7. Liverpool 27 43
8. Tottenham 26 42
9. Aston Villa 26 40
10. Arsenal 27 38
11. Leeds United 26 35
12. Wolverhampton 28 35
13. Crystal Palace 27 34
14. Southampton 27 33
15. Burnley 28 30
16. Brighton 26 26
17. Newcastle 26 26
18. Fulham 27 23
19. West Bromwich 27 17
20. Sheffield United 28 14
Takımlar O P
1. Atletico Madrid 24 58
2. Barcelona 25 53
3. Real Madrid 25 53
4. Sevilla 25 48
5. Real Sociedad 25 42
6. Real Betis 25 39
7. Villarreal 26 37
8. Granada 25 33
9. Levante 25 32
10. Athletic Bilbao 24 30
11. Valencia 26 30
12. Celta de Vigo 25 30
13. Osasuna 25 28
14. Cádiz 26 28
15. Getafe 26 27
16. Real Valladolid 26 25
17. Elche 25 24
18. Eibar 26 22
19. Deportivo Alaves 25 22
20. Huesca 25 20